linear codes on solid bursts and random errors

نویسندگان

pankaj kumar das

چکیده

the paper presents lower and upper bounds on the number of parity check digits required for a linear code that detects solid bursts of length $b$ or less and simultaneously any $e$ or less random errors. an example of such a code is also provided. further, codes capable of detecting and simultaneously correcting such errors have also been dealt with.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Codes on Solid Bursts and Random Errors

The paper presents lower and upper bounds on the number of parity check digits required for a linear code that detects solid bursts of length b or less and simultaneously any e or less random errors. An example of such a code is also provided. Further, codes capable of detecting and simultaneously correcting such errors have also been dealt with.

متن کامل

On Linear Codes Correcting Random and Low-Denslty Burst Errors

This paper presents lower and upper bounds on the number of parity-check digits required for a linear code that corrects random errors and errors which are in the form of low-density bursts.

متن کامل

On Correcting Bursts (and Random Errors) in Vector Symbol (n, k) Cyclic Codes

Simple methods are shown for correcting bursts of large size and bursts combined with random errors using vector symbols and primarily vector XOR and feedback shift register operations. One result is that any (n, k) cyclic code with minimum distance > 2 can correct all full error bursts of length n-k-1 or less if the error vectors are linearly independent. If the bursts are not full but contain...

متن کامل

Random Generation of Linear Codes

Isometry classes of linear codes can be expressed as orbits under the group action of a wreath product. Some combinatorial and algebraic methods are discussed which can be applied for generating linear codes distributed uniformly at random over all isometry classes.

متن کامل

Decoding high rate Reed-Muller codes from random errors in near linear time

Reed-Muller codes encode an m-variate polynomial of degree k by evaluating it on all points in {0, 1}. We denote this code with RM(m, k). For k = m − r, its distance is 2 and so it cannot correct more than 2r−1 errors in the worst case. For random errors one may hope for a better result. Shannon (Bell System Technical Journal, 1948) proved that for codes of the same rate, one cannot correct mor...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

ناشر: university of isfahan

ISSN 2251-8657

دوره 4

شماره 2 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023